Introduction
This work examines an optimization of inspections on older riveted hydraulic steel structures. The projects are typically performed on older riveted structures where data is limited on how to optimize inspection intervals. The project is led by the Army Corps of Engineers to support safety and maintain the use of older structures. The states have extensive data sets on their structures, but overall the states prefer the data but the observation is that there is a lack of coordination and communication. In this project, the states can contribute their data sets.

Each state prefers the data but overall the idea was to gather data that could be used in planning and modeling. The states prefer the data as it helps to set inspection intervals that are appropriate and economical. The states have data sets that are extensive and can be used to develop models and insights into the inspection needs of their structures. The states are interested in developing better models and understanding the factors that influence the inspection intervals.

The data collected will be used to develop a stochastic model of the deterioration process. The model will be used to develop an optimization model that can be used to determine the optimal inspection intervals. The model will be used to develop a cost-benefit analysis that can be used to determine the optimal inspection intervals.

Findings
1. The model developed in this study is an optimization of inspections on older riveted structures. The model is developed based on the states' data sets.
2. The model is developed using a Partially Observable Markov Decision Process (POMDP) approach. The model is developed using a reinforcement learning approach. The model is developed using a Markov Decision Process (MDP) approach.
3. The model is developed using a Markov Chain approach. The model is developed using a Markov Chain Monte Carlo (MCMC) approach. The model is developed using a Monte Carlo simulation approach.
4. The model is developed using a Markov Decision Process (MDP) approach. The model is developed using a Markov Chain Monte Carlo (MCMC) approach. The model is developed using a Monte Carlo simulation approach.
5. The model is developed using a Markov Chain approach. The model is developed using a Markov Chain Monte Carlo (MCMC) approach. The model is developed using a Monte Carlo simulation approach.